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Abstract. Robots playing soccer often rely on hard-coded behaviors
that struggle to generalize when the game environment change. In this
paper, we propose a temporal logic based approach that allows robots’
behaviors and goals to adapt to the semantics of the environment. In
particular, we present a hierarchical representation of soccer in which
the robot selects the level of operation based on the perceived semantic
characteristics of the environment, thus modifying dynamically the set of
rules and goals to apply. The proposed approach enables the robot to op-
erate in unstructured environments, just as it happens when humans go
from soccer played on an official field to soccer played on a street. Three
different use cases set in different scenarios are presented to demonstrate
the effectiveness of the proposed approach.

Keywords: semantic mapping · multi-agent planning · robot soccer

1 Introduction

The development of robots that can perform complex tasks in dynamic and
unstructured environments is an open research problem. One of the challenges
of this research area is to design control architectures that can adapt to changing
conditions and generalize to new and unseen situations.

In this paper, we focus on autonomous robots playing soccer. In the domain
of robot soccer, the majority of existing approaches rely on hard-coded behaviors
that are specifically designed for certain game scenarios (e.g., using green carpets
in indoor environments). While these methods can be effective in well-structured
environments, they often fail to cope with unexpected situations or variations in
the game conditions. Moreover, they are typically difficult to transfer to other
domains or tasks, as they rely on a fixed set of rules and assumptions.

To address the above listed limitations, we propose a dynamic approach to
robotic soccer, in which the robot derives the rules of the game from the se-
mantics of the playing environment. Specifically, we suggest a hierarchical rep-
resentation of soccer that allows the robot to choose the level of operation based
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Fig. 1: Different scenarios where robots can play using the same architecture. The
agent establishes the goal for the task from the semantics of the environment.

on the perceived characteristics of the game scenario. In this way, the robot can
select the appropriate set of rules to follow and dynamically modify its goal func-
tion accordingly. Our approach enables the robot to operate in unstructured and
dynamic environments, such as street soccer fields (see Fig. 1), where the tradi-
tional hard-coded approaches fail. Furthermore, our method is highly adaptable
to different domains and tasks, as it does not rely on fixed rules or assumptions.

In the context of the RoboCup, adapting robot strategy to the environment
can be hard to achieve given the fact that, in most leagues, state-machine behav-
iors are still predominant [1], and, even when the deployed behavior is learning-
based, the resulting policies can suffer in challenging and dynamic environmental
conditions.

To enable a robot to operate in unstructured environments, we propose a
hierarchical representation of the rules of the RoboCup agent controlled by a
planning system capable of accepting constraints in real-time from the exter-
nal environment. We believe that creating a mechanism for deploying robotic
agents in environments where not all the semantic elements are constituted is
preparatory to deal with the RoboCup 2050 challenge.

Our goal is to create a software architecture that can be used in every sce-
nario, spanning from simple (i.e., a robot playing alone) to complex scenarios
(i.e., two teams playing in a regular field using a specific set of rules). In partic-
ular, to exploit the task adaptation capabilities in RoboCup SPL, we present an
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architecture to deduce the goal of the robotics system while preserving the full
capability of the software, based on a planned strategy. In particular, we deployed
online conditioning through Pure-Past Linear Temporal Logic (PPLTL) rules on
finite traces, also known as PLTLf rules, expressing temporally extended goals
and non-Markovian properties over traces, natively. Our application allows for
real-time generation of non-deterministic policies that are able to fit different
situations in which robots have to spot the semantic relevant elements in an
environment and play using a goal deduced from them, as shown in Fig. 1.

The contribution of this work is three-fold.

1. A hierarchical representation of the goal capable to adapt to the complexity
level of the operational environment, based on a measure of the perceived
semantics that can be extracted from the robot sensors.

2. An SPL-related conceptual layer capable to generalize and to map ordinary
objects to semantically equivalent entities, decoupled from the sensory level.

3. An approach to FOND planning for temporal goals, enabling the system to
model the uncertainty of the environment and to manage such uncertainties,
by encoding non-Markovian properties on the resulting finite traces, as mixed
sets of predicates and PLTLf rules.

The rest of the paper is organized as follows. In Section 2, we survey the
current state-of-the-art; in Section 3, we expose a brief theoretical background
to introduce the concepts expressed in the paper; in Section 4, we show more
in detail the proposed method; in Section 5, we illustrate three use cases of the
presented system. Finally, in Section 6, we draw the conclusions and the possible
future developments of this work.

2 Related Work

Traditional approaches to programming robot soccer behavior often rely on hard-
coded rules that struggle to generalize when the game location changes [1]. To
address this issue, recent research has explored the use of machine learning tech-
niques to develop more adaptive robot soccer players by creating new environ-
ments based on real soccer scenarios as in [7].

However, these approaches still are leading to very specific robotic behaviors
and policies capable to behave properly in a structured scenario with a standard-
ized set of elements and a fixed set of rules. We propose a dynamic approach in
which the rules of the game are derived from the semantics of the environment
and extracted from the full standard set of rules.

To let the robots deal with the semantics of the environments, in [10] a
semantic mapping system is divided into four layers on three levels, spanning
from a sensory layer, to a categorical and a place layers is presented. In [2], an
online approach enables online semantic mapping, that permits adding elements
acquired in long-term interaction with the users to the representation. None of
these approaches tacked a peculiar field as the robotic soccer.
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Our approach is specifically tailored to the game of soccer, and we present
a hierarchical representation of soccer in which the robot selects the level of
operation based on the perceived characteristics of the environment. The hierar-
chical representation helps to scale in different scenarios, adapting to new goals.
In place of temporal constraints, the online generation of plans can be time-
consuming. To this end, [5] proposes FOND Planning with Linear Temporal
Logic over finite traces (LTLf ) in Fully Observable Non-Deterministic (FOND)
domains. [4] extends the previous approach to PLTLf goals by suitably modi-
fying standard FOND planning domains. In [9], PLTLf was used to condition a
RoboCup team’s behavior based on high-level commands from a human coach,
encoded as additional temporal constraints in the original goal for the FOND
planning problem at hand (in this case, the task specific to the robot role in the
multi-agent team).

Our approach differs from previous work because the set of PLTLf rules is
automatically chosen based on the perceived characteristics of the environment.
The PLTLf goal function is dynamically modified to adapt to changing condi-
tions enabling the robot to operate in unstructured environments, like a street
soccer field, where the characteristics of the environment may change rapidly
and require complex properties to be expressed without restructuring the whole
planning domain. In summary, the proposed approach has the potential to en-
able more adaptive and robust robot players, and could also be applied to other
domains where environmental cues can be used to determine robot behavior.

3 Background

Among the tools we used to automatically scale the robot policy based on the en-
vironment semantics, we need to introduce planning with a PLTLf goal formula.
In [6] and [5], a plan that entails an LTL goal formula is obtained by checking the
non-emptiness of the product of a deterministic automaton (modeling the plan-
ning domain) and a non-deterministic automaton modeling the goal formula. In
FOND planning, a DFA game is to be solved on said cross-product, to obtain a
policy.

Following [4], given a pre-existing, non-deterministic planning domain D and
a PPLTL planning goal G, a new domain D′ and a new goal G′ can be compiled,
so that any off-the-shelf non-deterministic planner can compute a plan for the
new goal, treating the problem as a typical FOND planning problem. Given the
set sub(G) of logical sub-formulae recursively obtained by the original goal G,
a minimal subset ΣG ⊆ sub(G) of sub-formulae of G can be computed.
Then, given the a formula g ∈ ΣG, a propositional interpretation si over the set
of predicates Pdeduced in the current planning domain, in the current state at
instant i, and a specific interpretation σi : ΣG → {⊤,⊥}, keeping track of the
truth values of sub-formulas in ΣG in the current state at instant i, a predicate
val(g, σi, si) can be defined for each sub-formula g ∈ sub(G) to track recursively
the truth value of the PLTLf sub-formula g at the current state.
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Given a trace τ over Pdeduced, the satisfaction of the original goal G is equiv-
alent to the truth value in the final state of the predicate val(·):

τ |= G iff val(G, σf , sf ) (1)

where σf is the interpretation of ΣG in the final state and sf is the set of
predicates of Pdeduced verified in the final state of the trace. At this point, each
predicate val(g, σi, si) can be included as an additional propositional variable
in the state of the planning domain, obtaining a new planning domain D′. Ac-
cording to equivalence 1, the new planning problem Γ ′ will feature a new goal
G′ = val(G, σf , sf ). Given the original planning problem Γ with a PLTLf goal
G and the new planning problem Γ ′, featuring the new planning domain D′,
with the new goal G′, then Γ has a winning strategy π if and only if Γ ′ has a
winning strategy π′.

4 Proposed Approach

Our approach consists of three main components: 1) A perception module that
extracts relevant features from the environment, 2) A hierarchical representation
of the task (the soccer game), and 3) A decision-making module that selects
the appropriate level of operation and goal function. To model the hierarchical
representation and the decision-making module, we start from the definition of
a Semantic Map in the formalization introduced in [3], with some modifications.
Specifically, we consider a representation composed by a tuple of three elements

SM = ⟨R,M,P⟩ (2)

where:

– R is the global reference system in which all the elements of the semantic
map are expressed;

– M is a set of geometrical elements obtained from sensor data, expressed in
the reference frame R, describing spatial information in mathematical form.

– P is a set of predicates, describing the environment.

Here, the definition of a unique reference frame R allows associating the ele-
ments of M with those in P. Then, given two semantic maps SM1 = ⟨R1,M1,P1⟩
and SMm = ⟨Rm,Mm,Pm⟩ generated as an expected model of the environment,
an evaluation metric can be defined as

δ(SM1, SMm) = f(|M1 ⊖Mm|, |P1 ⊟ Pm|), (3)

where R1 and Rm must coincide (e.g., through a simple geometrical transfor-
mation). It is important to notice that, since Eq. 3 assumes a unique reference
frame, it is particularly suitable for the analysis of different semantic maps which
are used to distinguish different semantic contexts in which the robot has to op-
erate. In fact, it allows reformulating the problem of semantic maps comparison
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as the problem of anchoring their representation to a common reference frame.
In the deployed environment, objects and their semantic characterization have
to belong to the same reference frame as the robotic agent maps them. Such
metrics can be applied at multiple levels of abstraction, spanning from the low
sensory level (⊖) to a conceptual level (⊟), as presented in [3].

The set M is related to the environmental elements that can be perceived
by the agent. In the case of the soccer environment, the set of field elements is
finite and represented by the field elements:

Mm = {Ball,GoalPosts, P layers, F ield} (4)

But it can also include referees, gestures, and any other element of the game
that can be perceived by the agent. The set of predicates contains the full set of
rules of the game that can be relaxed. In fact, P is derived by the set of rules of
the soccer game using the semantic evaluation δ as a metric. Only the predicates
referring to M and coherent with the global R are taken into account:

P(δ) ⊆ PSPL (5)

Being Pi(δ) the i − th level in the rule selection hierarchy and indicating it
as Pi for clarity of notation, the subsequent goals hierarchy is expressed as

Gm =

n⋃
i=1

G(Pi) ⊇
n−1⋃
i=1

G(Pi) ⊇ · · · ⊇ G(P1), (6)

where Gi represents the set of goals for the i-th level of the rules, and n is the
total number of stages.

As we progress through the inclusion of new rules, each set of goals (rep-
resented by Gi) builds upon the previous set of goals. The notation

⋃n
i=1 Gi

represents the union of all the sets of goals up to the n-th stage, while
⋃n−1

i=1 Gi

represents the union of all the sets of goals up to the (n-1)-th stage.
Each set of goals is a subset of the next set of goals, with the final set of goals

(G1) being the most basic and foundational. For example, for a single robotic
soccer player, if the only perceived element of the environment is the ball, the
fundamental goal is to reach and hold the ball. Perceiving a set of goal posts,
the agent’s goal is extended in reaching and holding the ball and scoring to the
goal. If in the semantics of the environment, the robot spots a couple of goals,
the agent goal will be extended in order to take into account the presence of two
teams and, hence, a goal that have to be defended and one that has to be used
for scoring. Finally, in the case of perceived full robotic fields the robot refers to
the full set of rules of the SPL.

In the presented architecture, when dealing with the robot behavior, the SM
influences the policy generated for the FOND planning problem through the
constraints expressed on the set of deduced predicates made available by the
conceptual layer. In fact, SM conditions the behavior of the robot assembling a
goal based on the set of rules that are related to items of the Semantic Map.

π = (U |S, SM) = (U |S, (R,MRS,Pdeduced)) (7)
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Fig. 2: Functional architecture. The sensory layer, here highlighted in green, is
shown in Fig. 3, while the conceptual layer, in red, is shown in Fig. 4.

Pdeduced is a subset of the planning domain D predicates. The FOND policy
conditioned by the semantic mapping leads automatically to a new policy:

π⋃n
i=1 Gi

= (U |S,Pdeduced) (8)

This approach aims at the deployment of the robotic agent in an unstructured
environment where the goal is defined by a PLTLf formula ϕ activated by the
set of elements that the robot can perceive.

As shown in [4], PLTLf goals are computationally advantageous with respect
to LTLf when temporal goal specifications are naturally expressed with respect
to finite past traces. With those premises, the policy π is the solution for a
corresponding FOND planning problem Γ with a PLTLf goal defined in [5] as

Γ := ⟨D, s0, ϕ⟩ (9)

where D is a FOND domain model, s0 is the initial state and ϕ is a PLTLf

formula. In the proposed approach, the equation above becomes

Γ := ⟨D′, s0, ϕ(

n⋃
i=1

Gi)⟩ (10)

where D′ is a planning domain where each sub-formula is represented by fluents,
s0 is the initial state common to all the traces of the robot behavior and the goal
depends on the sum of the n sets of goals Gi deduced in the current context.

4.1 Functional Architecture

Fig. 2 shows the three main components of our architecture: 1) The perception
module, which extracts relevant features from the environment, 2) the hierar-
chical and conceptual representation of the task (the soccer game), and 3) the
decision-making module that selects the appropriate level of operation and goal
function. The architecture relies on the B-Human Team SPL framework [11].
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Fig. 3: The detection modules in the sensory layer communicating with the con-
ceptual layer, in red and shown in Fig. 4.

Fig. 4: Hierarchical architecture showing the relationships between the perceived
objects and the semantic map in the conceptual layer.

Sensory Layer and Perception Modules. The classification of the envi-
ronment starts from the perception modules. We rely on different classifiers to
percept the field elements of the environment in order to reactive the unused
ones (see Fig. 3). To be able to play in every scenario, we created classifiers
able to detect common objects, easy to retrieve. In particular, for the use-cases
presented, we used:

– a Ball Perceptor capable to detect the SPL ball on any background and
under any light conditions, based on a OpenCV Haar Cascade Classifier.

– a Field Perceptor to identify the official SPL field and its elements.
– a Goal Perceptor capable to detect official SPL goal posts on any terrain.
– a Soda Can Perceptor to perceive soda can as elements representing goal

posts, developed with an OpenCV Haar Feature-based Cascade classifiers.
– a Player Perceptor, Deep Learning based.

The perception module is responsible for extracting relevant features from the
environment and providing them to the decision-making module.

Hierarchical representation and Conceptual Layer. Fig. 4 shows the hi-
erarchical representation of the soccer game. It consists of multiple levels, each
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representing a possible abstraction of the game and a goal that depends on
the semantic reconstruction of the environment. This is based on the concep-
tual layer, which compromises common-sense knowledge about concepts, and
relations (mainly IsA and IsPartOf relations) between those concepts, and in-
stances of spatial entities. The conceptual layer is built based on a pre-defined
list of possible objects but it can be easily extended in order to include equiva-
lences between entities belonging to official SPL fields and other heterogeneous
environments. Here, the elements are hierarchically classified, and from this rep-
resentation, the set of predicates extracted Pdeduced are used to condition the
planner in the next module.

Decision-making module using PLTLf goals over PDDL domains. The
uncertain set of features made available by the conceptual layer determines the
level of operation of the agent and the planning goal that is dynamically adapted
to it. The problem is modeled as a FOND planning problem in which the goal
is formulated as a PLTLf formula using predicates in Pdeduced made available
by the conceptual layer of the Semantic Extractor. Following [4], this formalism
allows to have generated traces satisfy temporal constraints, to model RoboCup
SPL rules or the goal G required at the current level of operation.

Given the goal G and a pre-existing PDDL domain D, describing the actions
that the agent can execute in the RoboCup SPL setting, with a set of predicates
containing the set of deduced predicates P ⊇ Pdeduced, we can obtain the new
problem Γ ′, featuring the new domain D′, such that any off-the-shelf planner
will produce a policy that realizes the original goal G, by realizing a new goal
G′ that is compatible with the original one. Following [4], the evaluation of the
new goal G′ is equivalent to the evaluation of the predicate val(G, σf , sf ).

For each predicate gi ∈ sub(G), a new predicate valgi = val(gi, σi, si) is
added to the planning domain D. The evaluation of all such propositions will
depend on the evaluation of a reduced set of propositional predicates gi ⊆ ΣG ⊆
sub(G). Using some features currently well-supported by most off-the-shelf plan-
ners, the new set of propositional rules is embedded in the pre-existing PDDL
planning domain. For each sub-formula g ∈ sub(G), a corresponding predicate
valg is embedded into the original PDDL domain as a derived predicate, so that
the result of its evaluation is equivalent to the result of val(G, σi, si).

Domain actions are also modified accordingly: using the PDDL construct for
conditional effects, the effects of each domain action are populated with rules
for the update of the new set of derived predicates, of the form:

valg → f(g) ∈ Σg ¬valg → ¬f(g) ∈ Σg (11)

where f(g) is a propositional formula in the reduced set Σg that is relevant
for the evaluation of valg. These rules are added to the effect of all domain
actions, so that the truth values of each valg are updated every time an action
is performed. As shown in [4], the size of the new planning problem is polynomial
in the size of the original problem and, in particular, the number of additional
predicates introduced is linear in the size of the PPLTL goal G.
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The resulting PDDL problem will have a new goal G′ = {valG}. Given the
original planning problem Γ with a PLTLf goal G and the new planning prob-
lem Γ ′ with the new goal G′, then Γ has a winning strategy π if and only if
Γ ′ has a winning strategy π′. In this case, any sound and complete planner re-
turns a policy π′ generating robot behaviors that are compliant with the original
temporal goal.

In scenarios where fluents from the environment are needed to model condi-
tions that are not known at planning time, ”oneof” constructs are used in the
post-conditions of actions to enumerate their possible unpredictable results, fea-
turing predicates whose value will depend on the agent’s own world model and
percepts at runtime. Policies generated with non-deterministic planners from the
provided PDDL domain are therefore robust for a set of unpredictable outcomes.
The generated policy is not yet ready to be executed with temporally-extended
actions. To overcome this problem, a pipeline composed by a set of ”environ-
ment registries”, used to ground policy fluents, actions and their arguments, to
elements made available by the conceptual layer, similarly to the architecture
presented in [9].

5 Use-cases

In order to test the presented approach, we propose three scenarios, in which
the agent has to gather data from the environment, extract the set of elements
belonging to the environment, determine the level of operation given the available
elements, assemble the corresponding goal and compute a policy accordingly.

The three use-cases present a progressively increasing number of features
made available by the conceptual layer, leading to an increasing level of com-
plexity in the resulting goal, in the number of temporal constraints. The MyND
planner [8] was used for the presented experiments.

Reaching the ball. First, only the ball is made available by the conceptual
layer. The goal is G0 = O(isat robot1 ballposition), where the PLTLf operator
O(·) (”once”) was used to require that any generated trace satisfies the predicate
”isat robot1 ballposition” at least once. The resulting policy, shown in Fig. 5a,
features only one action that moves the robot to the ball position.

Scoring a goal. At the conceptual layer, ”Score a goal” and ”Score in the Oppo-
site Goal” are different (in the first case two goal posts are required to identify a
goal, while in the second case four goal posts are required to identify two different
goals and discern which one is the opponent goal), while at the decision-making
level, the policy will be the same. The conceptual layer will provide at runtime
the correct fluents to determine if a goal is available and the grounded position
of the opponent goal. The resulting goal G1 = G0 ∧ O(goalscored) leads to a
more complex policy: the additional PLTLf rule O(goalscored), requires that
the goal is scored at least once along any generated trace. Given that the policy
enumerates all possible combinations of predicates representing runtime fluents,
only a single branch of the policy is show in Fig. 5b.
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(a) (b) (c)

Fig. 5: Policies generated from goals of increasing complexity. From left to right:
G0 = O(isat robot1 ballposition), G1 = G0 ∧ O(goalscored), G2 = GSPL =
G1 ∧ O(ballsafe S isat robot1 ballposition). Rectangular boxes contain fluents
for the overlapped branch.

Scoring a goal on the SPL field. In case the full field is perceived (including
the field lines), it is safer for the agent to assume the presence of the opponents
on the field, adopting a safer strategy in order to ensure that a goal is scored.
The goal is G2 = GSPL = G1 ∧ (ballsafe S isat robot1 ballposition), where
the additional PLTLf construct (ballsafe S isat robot1 ballposition) requires
the traces to keep the predicate ”ballsafe” verified in all states in the states
following the state in which the predicate isat robot1 ballposition is verified for
the first time: the agent will execute domain actions that keep the ball protected
(these actions have the predicate ballsafe in their post-conditions). Result is
partially shown in Fig. 5c.

The webpage sites.google.com/diag.uniroma1.it/play-everywhere con-
tains videos and images of NAO robots playing soccer in the wild. The page
contents will be extended in the future with novel use-cases.

6 Conclusions and Future Directions

In this paper, we have presented a novel approach to robot soccer, which enables
the robot to adapt its behavior and goals to the semantics of the environment
in real-time. The proposed approach is based on a hierarchical representation of
soccer and uses Pure-Past LTL rules to express temporal goals on finite traces.

Our method aims at being effective in unstructured and dynamic environ-
ments, where traditional hard-coded approaches fail. We have demonstrated its
effectiveness through three different use-cases, conducted in different scenarios.
Experimental results show that the proposed method can adapt to changing
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conditions and generalize to new and unseen situations, making it highly adapt-
able to different domains and tasks (see the webpage sites.google.com/diag.
uniroma1.it/play-everywhere). Overall, our approach represents a significant
step towards the development of robots that can perform complex tasks in dy-
namic and unstructured environments, which is an open research problem in the
field of robotics. As future work, we intend to use an image segmentation system
to extract the elements of the field, thus achieving a more complete understand-
ing of the playing environment.
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